Total No. of Pages: 02 Roll No.

Total No. of Questions: 07

B.Sc. (IT) (Sem.-1st)

BASIC MATHEMATICS-I

Subject Code: BS-103 Paper ID: [B0402]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

- l. Write briefly:
 - (a) Prove that $A \cap U = A$.
 - (b) Define power set with an example.
 - (c) Find the value of $\sin \frac{31\pi}{3}$.

(d) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
, and $B = \begin{bmatrix} 1 & 4 \\ 7 & 2 \end{bmatrix}$. Find $3A - 2B$.

(e) Find the n^{th} term of the sequence

$$5, 2, -1, -4, -7, \dots$$

- (f) Define median. Give formula to compute median in continuous series.
- (g) Evaluate ${}^{10}C_1 + {}^{10}C_2 + {}^{10}C_3 + + {}^{10}C_{10}$.
- (h) Define minors and Co-factors of determinant.

(i) The following table gives the marks obtained by B. Com. Students with Roll. No. 1 to 10. Obtain average marks of the students.

Roll No.	1	2	3	4	5	6	7	8	9	10
Marks	43	48	65	57	31	60	37	48	78	59

(j) Explain the relationship between A.M. and G.M.

SECTION-B

- 2. What is Frequency distribution table? Explain the various kinds of class intervals in which data can be arranged in a Frequency distribution. (10)
- 3. If the p^{th} , q^{th} , r^{th} terms of a G.P. are x, y, z respectively. Prove that

$$x^{q-r} \cdot y^{r-p} \cdot z^{p-q} = 1.$$
 (10)

4. Show that

$$\begin{vmatrix} a & b-c & c+b \\ a+c & b & c-a \\ a-b & b+a & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2)$$
 (10)

5. If A, B and C are three sets, then prove that

$$A \cap (B - C) = (A \cap B) - (A \cap C). \tag{10}$$

6. Find the coefficient of
$$x^{-2}$$
 in $\left(3x - \frac{7}{8}\right)^8$. (10)

7. For two matrices A and B,
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$, verify that

$$(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \cdot \mathbf{A}^{\mathsf{T}}. \tag{10}$$